Estimation of Primaries by Curvelet-domain Matched Filtering and Sparse Inversion

Mufeed H. AlMatar
Outline

• Curvelet domain matched filtering
• EPSI & Matching Surface Reflectivity
• Results
• Future Works
Successful Matching

(i) control possible overfitting

(ii) handle data with non-unique dips

(iii) apply wavefield separation after matching stably

Herrmann et al (2007)
The pseudodifferential operator

\[(\Psi f)(x) = \int_{\mathbb{R}^d} e^{-ix \cdot \zeta} a(x, \zeta) \hat{f}(\zeta) d\zeta\]

The symbol of the pseudodifferential operator
(\Psi f)(x) \approx C^T D_{\Psi} C f(x)
Curvelet Matching Formulation

\[g = \Psi f \]

\[z = \arg\min_z \frac{1}{2} \| g - Bz \|_2^2 \]

\[B := C^T \text{diag}(Cf) \]
Curvelet Matching Formulation

\[g = \Psi f \]

\[z = \arg\min_z \frac{1}{2} \| g - Bz \|_2^2 + \frac{\lambda^2}{2} \| Lz \|_2^2 \]

\[B := C^T \text{diag}(Cf) \]

\[L = \begin{bmatrix} D_1^2 & D_2^T & D_\theta^T & D_{\text{scale}}^T \end{bmatrix}^T \]
Estimation of primaries by sparse inversion

\[\hat{\mathbf{G}} \approx \mathbf{Q} + \mathbf{R}\hat{\mathbf{P}} \]

- **\hat{\mathbf{G}}**
 - Surface-free data
- **\mathbf{Q} + \mathbf{R}\hat{\mathbf{P}}**
 - Downgoing wavefield
 - Unknown source function
 - Unknown reflection operator
- **\hat{\mathbf{P}}**
 - Upgoing wavefield
EPSI (1D Case)
EPSI (1D Case)

\[Q^+ + G - P^- \]

Source
Receivers (geophones)

Thursday, December 9, 2010
EPSI (1D Case)

Source

Q^+

G

P^-

Receivers (geophones)

P_0^-

GRP^-

Q^+
EPSI (1D Case)
EPSI (1D Case)
EPSI (1D Case)

\[Q^+ + G - P^- - R = -1 \]

Source
 Receivers (geophones)

\[Q^+ \]

\[P_0^- \]

\[GRP^- \]
EPSI (1D Case)
EPSI (1D Case)

\[Q^+ + G - R = -1 \]

Source

Receivers (geophones)

\[Q^+ \]
EPSI (1D Case)

\[Q^+ + G - P^- = -1 \]

Source

Receivers (geophones)

Thursday, December 9, 2010
Estimation of primaries by sparse inversion

Solution via tri-convex optimization

Fix the source Q, assume $R = -I$ for now. Solve for the Green’s function G

$$\hat{x} = \arg \min_x \|x\|_1 \quad \text{subject to} \quad \|A[\hat{Q}]x - b\|_2 \leq \sigma$$

$$\hat{g} := \operatorname{vec}(\hat{G}_{1\ldots n_F}) = F^t S^* \hat{x}$$
Estimation of primaries by sparse inversion

Fix the Green’s function G, solve for the source Q.

$$\hat{q} = \arg \min_q \frac{1}{2} \| \tilde{y} - B[\hat{G}]\hat{q} \|_2^2 + \lambda_F \| L_F \hat{q} \|_2^2$$

$$B[\hat{G}] := \text{blockdiag}([\hat{G} I]_{1 \cdots n_f})$$

$$\tilde{y} = \text{vec}([\hat{P} - \tilde{G}\hat{P}]_{1 \cdots n_F})$$
Curvelet-domain matching

When $\mathbf{R} \neq -\mathbf{I}$, we can use curvelet-domain matching, i.e.,

$$\hat{\mathbf{P}} - \hat{\mathbf{G}}\hat{\mathbf{Q}} = \hat{\mathbf{G}}\hat{\mathbf{R}}\hat{\mathbf{P}}$$

with,

$$\mathbf{R} \approx \mathbf{C}^* \text{diag}(\mathbf{z})\mathbf{C}$$

to get:

$$\hat{\mathbf{P}} - \hat{\mathbf{G}}\hat{\mathbf{Q}} = \hat{\mathbf{G}}[\mathbf{C}^* \text{diag}(\mathbf{z})\mathbf{C}\hat{\mathbf{P}}]$$
\[\hat{b} = \hat{G} \left[C^* \text{diag}(\hat{z}) C \hat{P} \right] \]
\(\hat{b} = \hat{G} \left[C^* \text{diag}(\hat{z}) C P \right] \)
No Matching
With Matching
Future Works

• Faster formulation

\[P - GQ = C^* \, \text{diag}(z) \, CGP \]

• Frequency regularization

• Bayesian separation.
Acknowledgements

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BP, Chevron, ConocoPhillips, Petrobras, Total SA, and WesternGeco.