Seismic wavefield inversion with curvelet-domain sparsity promotion

Felix J. Herrmann*
fherrmann@eos.ubc.ca

Deli Wang**
wangdeli@email.jlu.edu.cn

*Seismic Laboratory for Imaging & Modeling
Department of Earth & Ocean Sciences
The University of British Columbia

**Jilin University
College of Geoexploration Science and Technology

SEG
Las Vegas, November 9-14
General statement

• Recent resurgence of wavefield inversions
 – *imaging* where the ‘sunken’ source & data-residue wavefields are inverted [Claerbout, Berkout and others]
 – *focal transform* where primaries are deconvolved to focus data [Berkhout ‘06]
 – *interferometric deconvolution* where wavefields are inverted [Vasconcelos & Snieder ‘08, Wapenaar ‘08]
 – *data inverse* where the data itself is inverted [Berkhout ‘06]

• Challenge is to *stably* invert these *wavefields*
 – in the presence of noise, finite aperture, and source signatures
 – for incomplete & simultaneously acquired data

• Propose a *regularization* based on curvelet-domain sparsity promotion enforced by nonlinear optimization ...
Inverse data-matrix
Problem statement

- Seismic wavefield inversions = multi-D deconvolutions

- Corresponds to the inversion of Berkhout’s [‘82] data matrix
 - monochromatic
 - inverted by damped & weighted least-squares matrix inversion [Wapenaar ‘08]

- Suffers from instabilities that limit applicability to real data
 - noise
 - finite acquisition
 - incomplete data

- Present a framework for stable inversion with sparsity promotion.
Motivation

• Successful application of curvelets
 – wavefield recovery from missing traces [F.J.H & Hennenfent ‘08, Hennenfent & F.J.H ‘08]
 – wavefield recovery from compressive simultaneous simulations [F.J.H et. al ‘08]
 – curvelet-transform [Candes et. al. ‘06] based sparsity promotion

• Robustness & uplift of focused curvelet-based wavefield recovery
 – curvelet-regularized inversion of the primary-data-matrix operator [F.J.H et. al. ‘07-’08]
 – incorporation of a priori information
 – improved wavefield recovery from missing traces

• Insights from compressive sampling [Donoho ‘06, Candes et.al ‘06, Lin & F.J. H ‘07]
 – jittered sampling [Hennenfent & F.J.H]
 – blended-source design [F.J.H et.al ‘08]
 – one-norm solvers [Hennenfent et. al. ‘08]

• Move from multi-D correlations to multi-D deconvolutions
2D discrete curvelets
Sparsity-promoting program

Solve for x_0

- exploits \textit{sparsity} in the curvelet domain as a \textit{prior}
- finds the sparsest set of curvelet coefficients that match (incomplete) data
- inverts an \textit{underdetermined} system

\[P_\epsilon : \begin{cases} \tilde{x} = \arg \min_x \| x \|_1 \quad \text{s.t.} \quad \| A\tilde{x} - y \|_2 \leq \epsilon \\ \tilde{g} = S^H \tilde{x} \end{cases} \]

Acquired data

Complete wavefield (transform domain)

Restriction operator

\[A := RS^H \]

Redundant sparsifying transform

\[\tilde{x} = \arg \min_x \| x \|_1 \quad \text{s.t.} \quad \| A\tilde{x} - y \|_2 \leq \epsilon \]

\[\tilde{g} = S^H \tilde{x} \]

Observations:

- exploits \textit{sparsity} in the curvelet domain as a \textit{prior}
- finds the sparsest set of curvelet coefficients that match (incomplete) data
- inverts an \textit{underdetermined} system

\[\text{Sacchi et al.'98} \]
\[\text{Xu et al.'05} \]
\[\text{Zwartjes and Sacchi'07} \]
\[\text{F.J.H and Hennenfent'08} \]
Data matrix (2D seismic line)
Subsampling by restriction (picking)

For each time-slice along source-receiver coordinates

\[B = \left(R^{\Sigma_r} \right)^* U \left(R^{\Sigma_s} \right) \]

or more succinctly with Kronecker products

\[b = \left(R^{\Sigma_s} \otimes R^{\Sigma_r} \right) \text{vec} (U) \]

For all time slices in the data matrix, we have

\[R = \left(R^{\Sigma_s} \otimes R^{\Sigma_r} \otimes I \right) \]
Incomplete data
Curvelet-domain sparsity promotion
Wavefield recovery by sparsity promotion

\[
\begin{align*}
R &= \left(R^{\Sigma_s} \otimes R^{\Sigma_r} \otimes I \right) \quad \text{(source-receiver restriction)} \\
b &= R \text{vec} (U) \quad \text{(incomplete data)} \\
A &= RS^H \\
\tilde{x} &= \arg \min_x \| x \|_1 \quad \text{s.t.} \quad \| Ax - b \|_2 \leq \epsilon \\
\tilde{U} &= \text{vec}^{-1} \left(S^T \tilde{x} \right) \quad \text{(recovered data)}
\end{align*}
\]

Curvelet sparsity underlies success of wavefield recovery
- from large percentages of traces missing [F.J.H & Hennenfent ‘08]
- improvements from jittered subsampling [Hennenfent & F.J.H ‘08]

Formulation
- only exploits curvelet-domain sparsity
- misses focusing with wavefields

Can we extend this formalism to invert wavefields?
Common-problem formulation

• Extension of curvelet-based wavefield recovery to include (de)focusing with data-matrices defined by wavefields [F.J.H et.al ’07-’08]
 – define linear data-matrix operators
 – multi-D convolutions
 – and their adjoint multi-D correlations

• Incorporates prior information

• Use transform-domain sparsity to stably invert for all frequencies

• Combination of sparsity and focusing
Common approach: damped least-squares

Monochromatic forward model:

to be inverted wavefield

\[
\hat{G} = \hat{U} \hat{U}^H \left(\hat{U} \hat{U}^H + \epsilon^2 I \right)^{-1} \hat{V}
\]

unknown ”image”

known wavefield

Monochromatic pseudo-inverse:

[Berkhout '82]
[F.J.H '07-'08]
[Wapenaar '08]
Curvelet-based wavefield inversion (CWI)

Cast into rigorous *linear-algebra* framework, i.e.

\[\hat{G}_i \hat{U}_i = \hat{V}_i, \ i = 1 \cdots n_f \]

which with the Kronecker identity

\[\text{vec} (AXB) = \left(B^H \otimes A \right) \text{vec} (X) \]

becomes for each *frequency*

\[\left(I \otimes \hat{U}_i \right) \text{vec} (\hat{G}_i) = \text{vec} (\hat{V}_i), \ i = 1 \cdots n_f \]

Set up a system for *all frequencies* and incorporate the *temporal Fourier* transform
Curvelet-based wavefield inversion (CWI)

\[
\begin{pmatrix}
F^H \\
I \\
I
\end{pmatrix}
\begin{bmatrix}
I \\
\hat{U}_1 \\
\hat{U}_n_f
\end{bmatrix}
F =
\begin{bmatrix}
G_1 \\
G_{n_f}
\end{bmatrix}
=
\begin{bmatrix}
V_1 \\
V_{n_f}
\end{bmatrix}
\]

with \(F = (I \otimes I \otimes F) \) (temporal Fourier transform)

Linear system is
- conducive to curvelet-based wavefield inversion with sparsity promotion
- versatile
- conducive to compressive subsampling (e.g. missing trace or blended acquisition)
Focal transform [Berkhout ’06, F.J.H et.al ‘07-’08]

\[U = \Delta P\]
(primary data-matrix operator)

\[V = P\]
(total data matrix)

\[b = \text{vec}(V)\]

\[A = UC_3^H\]
(focused 3-D curvelet transform)

\[\tilde{x} = \arg\min_x \|x\|_1 \quad \text{s.t.} \quad \|Ax - b\|_2 \leq \epsilon\]

\[\tilde{G} = \text{vec}^{-1} \left(C_3^H \tilde{x} \right)\]
(focused data)

- Primary data-matrix operator is inverted
- Total data multi-D deconvolved with the primaries
- Primaries focused to a directional source
- First-order multiples mapped to primaries
Slice from the total data matrix (V)
Slice from primary data-matrix operator (U)
Focused/multi-D deconvolved data (G)
Curvelet-based wavefield inversion (CWI)

\[
P_\epsilon : \begin{cases}
 b &= \text{vec}(V) \\
 A &= US^H \\
 \tilde{x} &= \arg\min_x \|x\|_1 \quad \text{s.t.} \quad \|Ax - b\|_2 \leq \epsilon \\
 \tilde{G} &= \text{vec}^{-1}\left(S^T \tilde{x}\right) \approx U^\dagger V \\
\end{cases}
\]

Corresponds to

- curvelet-sparsity \textit{regularized} inversion
- multi-D \textit{deconvolution} of the wavefield in the data matrix U with respect to the wavefield in the data matrix V

Applications

- \textit{focused} wavefield recovery
- \textit{defocussed} multiple prediction
- data \textit{inverse}
- imaging of \textit{blended} data
Focused wavefield recovery
Motivation

- Exploit *wavefield* focusing in the solution of the *recovery* problem
 - invert subsampled primary data-matrix operator [F.J.H et.al ‘07-’08]
 - interpolate by taking the inverse focal and curvelet transforms

- Combination of sparsity and *wavefield* focusing
 - improved focusing \Rightarrow more sparsity
 - curvelet sparsity \Rightarrow better focusing
Focused wavefield recovery

\[
\begin{align*}
R &= \left(R_{\Sigma_s} \otimes R_{\Sigma_r} \otimes I \right) \quad \text{(source-receiver restriction)} \\
V &= P \quad \text{(total data matrix)} \\
b &= R \text{vec} \left(V \right) \quad \text{(incomplete data)} \\
U &= \Delta P \quad \text{(primary data-matrix operator)} \\
A &= RS^H \\
S^H &= UC^H_3 \quad \text{(focussed 3-D curvelet transform)} \\
\tilde{x} &= \arg \min_x \| x \|_1 \quad \text{s.t.} \quad \| Ax - b \|_2 \leq \epsilon \\
\tilde{V} &= \text{vec}^{-1} \left(S^H \tilde{x} \right) \quad \text{(recovered data)}
\end{align*}
\]

- Restrictions along the source-receiver coordinates
- Focusing by inversion of the restricted primary-data matrix operator
- Reconstruction by inverse curvelet transform and defocusing
Incomplete data
Curvelet-domain sparsity promotion
Focused curvelet-domain sparsity promotion
Defocussed multiple prediction
Motivation

- **Multiple** prediction by multi-D convolution with the primary data-matrix operator
 - requires extensive *matching* to compensate for
 - the “source signature”
 - finite acquisition aperture
 - etc.

- **Defocussed** multiple prediction by multi-D deconvolution with the primary data-matrix operator
 - inversion of the adjoint=multi-D correlation with the primary data-matrix operator
 - compensates for the *amplitudes, finite aperture, & source wavelet*
Defocussed multiple prediction

\[
\begin{align*}
U &= \Delta P^H \\
V &= P \\
b &= \text{vec}(V) \\
A &= US^H \\
S^H &= C^H_3 \\
\tilde{x} &= \arg \min_x \|x\|_1 \quad \text{s.t.} \quad \|Ax - b\|_2 \leq \epsilon \\
\tilde{P} &= \text{vec}^{-1}\left(S^H\tilde{x}\right) \\
\end{align*}
\]

- Defocussing by inversion of the \textit{adjoint} of primary-data matrix operator
- Multi-D \textit{deconvolution} of the multi-D correlation with the \textit{primaries}
- Reconstruction by \textit{inverse} curvelet transform

Seismic Laboratory for Imaging and Modeling
Defocussed multiple prediction

multi-D convolution

multi-D deconvolution
Amplitude spectra (averaged)

multi-D convolution

multi-D deconvolution
Stable computation of the ‘data inverse’
Motivation

- **Data-matrix inverse domain** leads to a natural separation of *primaries* and *surface-related multiples* [Berkhout ‘06]

\[
\hat{P}^\dagger = \Delta \hat{P}^\dagger - \hat{A},
\]

- inverted data
- inverted primaries
- ‘source’

- surface-related effects including source signature are mapped to a directional source
- primaries are mapped to the inverse of the primary data matrix

- Application to *real* data hampered by instabilities ...
Data inverse

\[
\begin{align*}
U &= P \quad \text{(total data operator)} \\
V &= I_\Psi \quad \text{(bandwidth-limited delta)} \\
b &= \text{vec}(V) \\
A &= US^H \quad \text{(multi-D convolution)} \\
S^H &= C_3^H \quad \text{(3-D curvelet transform)} \\
\tilde{x} &= \arg \min_x \|x\|_1 \quad \text{s.t.} \quad \|Ax - b\|_2 \leq \epsilon \\
\tilde{P} &= \text{vec}^{-1}\left(S^T\tilde{x}\right) \quad \text{(inverted data)}
\end{align*}
\]

- Inversion of the *full-data matrix operator*
- Multi-D *deconvolution* of the multi-D *convolution* with the data
- Regularized by curvelet-domain *sparsity* promotion
bandwidth-limited pulse

the same in f-k space
Data inverse synthetic data

offset (m)

-1000 0 1000

-0.5

0

0.5

1

1.5

2

time (s)

total data

offset (m)

-1000 0 1000

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (s)

total data inverse

Seismic Laboratory for Imaging and Modeling
Data inverse synthetic data

estimated primaries

estimated-primaries inverse
Data inverse real data

- Total data
- Total-data inverse
Data inverse real data

estimated primaries

estimated-primaries inverse
An encore: imaging of blended data
Motivation

● **Observation:** *Blended* data acquisition is an instance of *compressive sensing* [F.J.H et. al ‘08]

● *Image directly* in the *simultaneously* acquired data domain

● Imaging conditions associated with adjoint-state methods [Tarantola ‘80s, Plessix, Pratt ’00’s] for the wave equation are based on multi-D correlations of wavefields
 – suffer from finite aperture & source effects
 – contain interferences due to blended acquisition

● Alternative approach based on *wavefield inversion*
Adjoint state or reverse-time methods

- At each depth level multi-D correlation of the monochromatic forward and inverse extrapolated wavefields, \mathbf{U} and \mathbf{V}
- Zero-offset image [Berkhout, Claerbout, and others, ‘80s]

$$\delta \mathbf{m} \approx \text{diag} \left(\Re \left(\hat{\mathbf{U}} \hat{\mathbf{V}}^\dagger \right) \right)$$

- Consider deconvolution instead, i.e,

$$\hat{\mathbf{G}} = \Re \left(\hat{\mathbf{U}} \hat{\mathbf{V}}^\dagger \right)$$

- Use wavefield inversion technique
 - improve imaging
 - recover from blended data = compressively subsampled data
Wavefields at 30 Hz [real parts]
Imaging by deconvolution

\[
\begin{align*}
b &= \text{vec} \left(\hat{V}^H \right) \\
A &= \hat{U}^H C_2^H \\
\tilde{x} &= \arg \min_x \|x\|_1 \quad \text{s.t.} \quad \|Ax - b\|_2 \leq \epsilon \\
\tilde{G} &= \text{vec}^{-1} \left(C_2^H \tilde{x} \right)
\end{align*}
\]

- Inversion instead of correlation
- Regularized by 2-D curvelet sparsity promotion
- Example for single layer model at transition
Correlation-based versus wavefield inversion

\[\hat{G} = \Re \left(\hat{U} \hat{V}^\dagger \right) \]

\[\tilde{G} = \text{vec}^{-1} \left(C_2^H \tilde{x} \right) \]
Imaging of blended data

\[
\begin{align*}
R &= \left(R^{\Sigma_s} \otimes R^{\Sigma_r} \right) \quad \text{(picking operator)} \\
M &= F_2^* \left(e^{i\theta} \right) F_2 \quad \text{(random encoder)} \\
b &= RM \text{vec} \left(\hat{V} \right) \quad \text{(blended wavefield)} \\
A &= RM \hat{U}^H C_2^H \quad \text{(blended focused 2-D curvelet transform)} \\
\tilde{x} &= \arg\min_x \|x\|_1 \quad \text{s.t.} \quad \|Ax - b\|_2 \leq \epsilon \\
\tilde{G} &= \text{vec}^{-1} \left(C_2^H \tilde{x} \right) \quad \text{(imaged data)}
\end{align*}
\]

with \(\theta = \text{Uniform}([0, 2\pi]) \) random phase rotations.

- CS subsampling after Romberg’s [‘08] random convolution
- Regularized by 2-D curvelet sparsity promotion
- Imaged from source-receiver down-sampling after Fourier-space random phase encoding
Imaging of blended data

\[\text{vec}^{-1}(RM\text{vec}(\hat{V})) \]

Subsampled V

\[\text{vec}^{-1}(A^Hb) \]

Image by correlation
Imaging of blended data

\[\tilde{G} = \text{vec}^{-1} \left(C_2^H \tilde{x} \right) \]

\[\text{diag} \left(\mathcal{R} \left(\tilde{G} \right) \right) \]

Image by deconvolution

Comparison
Conclusions

- Wavefield inversion is a versatile tool in seismic-data processing & imaging

- Curvelet-domain sparsity is a powerful prior that leads to stable inversions of
 - the primary-matrix operator => improved focusing & recovery
 - the adjoint of the primary-matrix operator => improved multiple prediction
 - the data-matrix operator
 - blended wavefields

- Outlook
 - wavefield predictions with improved spectral and amplitude properties
 - wavefield predictions from blended data
 - sparsity-promoting migration & full waveform inversion
Acknowledgments

The authors of CurveLab (Demanet, Ying, Candes, Donoho) Dr. Verschuur for his synthetic data and the estimates for the primaries.
The SLIM team Sean Ross Ross, Cody Brown and Henryk Modzeleweski for developing SLIMPy: operator overloading in python.
These results were created with Madagascar and SPARCO.
This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE (334810-05) of F.J.H. This research was carried out as part of the SINBAD project with support, secured through ITF (the Industry Technology Facilitator), from the following organizations: BG Group, BP, Chevron, ExxonMobil and Shell.
Further reading

7. Herrmann, F. J., Wang, D. and Gilles Hennenfent., G. Multiple prediction from incomplete data with the focused curvelet transform. In the proceedings of the Society of Exploration
8. Herrmann, F. J., Wang, D. and Gilles Hennenfent., G. Multiple prediction from incomplete data with the focused curvelet transform. In the proceedings of the Society of Exploration

slim.eos.ubc.ca