A Correlation-based Misfit Criterion for Wave-equation Traveltime Tomography

Tristan van Leeuwen
Felix J. Herrmann, Wim Mulder
Waveform imaging
Overview

- Waveform tomography
- Wavefrontset detection
- Misfit criteria
- Numerical example
- Future work & Conclusions
Waveform tomography

Model the data as

$$\left[\frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \nabla^2 \right] u = w(t) \delta(x - s),$$

$$d(t, s, r) = u(t, x, s)|_{x=r} \equiv F[c].$$

Goal is to find the velocity given the data and source signature.
Waveform tomography

Such inverse problems have been extensively studied. Major findings:
- recovery via LS is problematic for bandlimited data
- some form of traveltime fitting needed for ‘complete’ reconstruction
Waveform tomography

Wavenumber coverage with limited aperture

[Stork; Bube; Natterer;]
Waveform tomography

Wave-equation traveltime tomography
Waveform tomography

WE traveltime tomography:
• relies on detecting shift of singular support
• widely used criterion: maximum of the correlation

\[
\min_c \|\tau[c]\|_2^2, \quad \tau[c] = \argmax_t (d \ast \bar{d})(t)
\]

[Cara 87; Luo 91; Dahlen 10; Hormann 02; de Hoop 05; Brytik 10]
Waveform tomography
LS may be re-formulated as maximizing the normalized zero-lag correlation

\[\| d - \bar{d} \|_2^2 = \| d \|_2^2 + \| \bar{d} \|_2^2 - 2 \left(\langle d, \bar{d} \rangle - (\bar{d}^*d)_{t=0} \right) \]

`picking approach’ is a clever extension of this
Wavefrontset detection

Given a function of the form

\[f(x, t) = \int d\omega a(\omega, x, t) \exp[i\phi(\omega, x, t)] \]

the wavefrontset is given by

\[\text{WF}(f) \subseteq \{ x, t; \partial_x \phi, \partial_t \phi \mid \partial_\omega \phi = 0 \} \]

In particular:

\[\text{WF}(\bar{d} * d) \subseteq \{ s, r, \bar{T} - T; \nabla(\bar{T} - T), i\omega \} \]
Wavefrontset detection

- Multiscale WF detection via the FBI transform:

\[G[f](t, \omega, \sigma) = \frac{1}{\sqrt{\sigma}} \int dt' f(t') W[(t - t')/\sigma] \exp[\omega t'] \]

- if \(t \not\in WF(f) \) then for fixed \(\omega \) and any \(N \in \mathbb{N} \)

\[|G[f](t, \omega, \sigma)| \leq \sigma^N \quad \text{as} \quad \sigma \downarrow 0 \]

[Hormander 83; Hormann 02; de Hoop 05]
Wavefront set detection

reference

observed

correlation
Wavefrontset detection

reference

observed

correlation
Wavefrontset detection

reference

observed

correlation
Wavefrontset detection

reference

observed

correlation
Misfit criteria

- $\tau[\omega, \sigma] = \arg\max_t G[\bar{d} \ast d](t, \omega, \sigma)$ converges to picking approach as $\sigma \downarrow 0$ and $\omega = 0$

- **Maximize** $\| G[\bar{d} \ast d](0,.,\sigma) \|^2$

- **Minimize** $\| \partial_t G[\bar{d} \ast d](0,.,\sigma) \|^2$
Misfit criteria

Rewrite:

\[G[f](0, \omega, \sigma) = (\hat{W}_{\sigma} \cdot f)(\omega) \]
\[\partial_t G[f](0, \omega, \sigma) = (\hat{W}'_{\sigma} \cdot f)(\omega) \]

where

\[W_{\sigma}(t) = \frac{1}{\sqrt{\sigma}} \exp[-(t/\sigma)^2] \]

Misfit:

\[\phi = \frac{||W_{\sigma} \cdot (\bar{d} \ast d)||_2^2}{||d||_2^2} \]

[TvL 08; TvL 10]
Misfit criteria

velocity perturbation
Misfit criteria

velocity perturbation
Misfit criteria

velocity perturbation
Misfit criteria

velocity perturbation

small, medium, large
Misfit criteria

Multiscale WF detection allows us to move from
• Traveltime fitting at large scale to
• `Stack power’ at small scale
Numerical example II

Real cross-well data set
- Frequency domain FD
- Adjoint-state for gradient
- L-BFGS for optimization
- different stages using different basis functions

[TvL 10;]
Numerical example
Numerical example II

`Diving-wave tomography`
Numerical example II
Reflection tomography
Reflection tomography

- Correlate wavefields in space \((\Delta x, \Delta z)\)
- Produces image volume
- Measure focusing with Gaussian weight

[Claerbout; Rickett; Sava; Symes]
Reflection tomography

Spatial correlation:

\[E = VU^* \]

where \[HU = Q \] and \[H^*V = R \]

many r.h.s. !!

Action on a vector:

\[E\mathbf{x} = V (U^*\mathbf{x}) = H^{-*} (Ry) \]

\[y \]

one r.h.s. !!
Reflection tomography
Reflection tomography

low velocity

high velocity

[TvL 11]
Reflection tomography

c focussing power for small, medium and large scale

![Graph showing focussing power for small, medium, and large scale](image-url)
Conclusions & Future work

- Natural way to move from traveltime to amplitude fitting, and overcome loopskipping
- Multiscale WF detection might be extended to dispersion and stereo tomography
- Similar ideas might be applied in reflection case
Acknowledgements

The organizers

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BP, Chevron, ConocoPhillips, Petrobras, Total SA, and WesternGeco.
References

de Hoop, M.V. et al, 2005, Characterization and `source-receiver’ continuation of seismic reflection data. Communications on Mathematical physics
Duchkov, A. et al, 2010, Discrete almost-symmetric wave packets and multiscale geometric representation of seismic waves. IEEE trans. on Geoscience and remote sensing
Dahlen, F.A. et al, 2000, Frechet kernels for finite frequency traveltimes, GJI, 141
Billette, F. et al, 1998, Velocity macro-model estimation from seismic reflection data by stereo tomography. GJI 132(2)
Natterer, F. et al,
Hormander, L., 1983,
Bube, k., various papers in Geophysics
Stork, B., various papers in Geophysics