The problem is ill-posed—has scaling and shift ambiguities. Regularization CANNOT avoid these ambiguities.

Blind deconvolution

The problem is ill-posed—has scaling and shift ambiguities. Regularization CANNOT avoid these ambiguities.

Usual assumptions and regularizations

- w is short in time
- x is nearly sparse
- ℓ_2 penalty on w
- ℓ_1 penalty on x

Blind deconvolution with multiples

$$ y = w \ast x = w_1 \ast x_1 + \cdots = w_n \ast x_n + x' + \cdots $$

Traditional solver (EPSI)

- Assume w is short in time: $w \in C^0, C = \mathbb{J}, \mathbb{R}$
- Put ℓ_2 penalty on x, $(x, \alpha) = \min_{x, \alpha} \{\|y - w \ast x - y + x'\|_2 + \alpha \|x\|_1\}$
- Optionally update w and x.

Resolving the scaling(shift) ambiguity is still there

$$ \hat{y} = x(\hat{w} - \hat{y}) = \hat{w}_0(\hat{w}_0 - \hat{y}) $$

where $\hat{w}_0 = aw$, $\hat{x}_0 = x_0 \hat{w}_0 / \alpha$

$$ \hat{w}_0 = \hat{w}_0 - \hat{y} $$

with $\alpha = 2$.

Solving the optimization problem (method of multipliers)

Original problem (non-convex, non-differentiable)

$$ \min_{x \in \mathbb{R}^n} \{\|y - \hat{w} \ast x - y + x'\|_2 \} $$

subject to $\|y - \hat{w} \ast x - y + x'\|_2 \leq \epsilon$

Box constraint

$$ 0 \leq x_{i,j} \leq 1 $$

Non-overlapping constraint

$$ \sum_{i} x_{i,j} = 1 $$

Lifting: Mitigate local minima

$$ X, \hat{X} $$

Lifted variables

$$ x, \hat{x} $$

Final optimization problem

Low rank penalty

$$ \min_{x \in \mathbb{R}^n} \{\|y - \hat{w} \ast x - y + x'\|_2 \} $$

subject to $\|y - \hat{w} \ast x - y + x'\|_2 \leq \epsilon$

Box constraint

$$ 0 \leq x_{i,j} \leq 1 $$

Non-overlapping constraint

$$ \sum_{i} x_{i,j} = 1 $$

Weights sums up to 1

Reconstruct x, \hat{x} from Z

$$ x_{i,j} = \sigma(x_{i,j}) $$

$$ \hat{x}_{i,j} = \sigma(\hat{x}_{i,j}) $$

Pluto1.5 data

Initial guess: $w = 0$, $x = \text{normalized random Gaussian vector}$

Clean data, 30 traces

SNR 13dB, 40 traces

Acknowledgements

We would like to thank all the sponsors of SINBAD project for their continued support.

References