Randomized wavefield inversion

Felix J. Herrmann*
fherrmann@eos.ubc.ca

Joint work with Yogi Erlangga, and Tim Lin

*Seismic Laboratory for Imaging & Modeling
Department of Earth & Ocean Sciences
The University of British Columbia

slim.eos.ubc.ca

Delphi, June 4th, 2009
Motivation

- **Seismic data processing, modeling & inversion:**
 - firmly rooted in Nyquist’s sampling paradigm for (modeled) wavefields
 - too *pessimistic* for signals with *structure*
 - existence of sparsifying transforms (e.g. curvelets)

- **Major impediment:** “*curse of dimensionality*”
 - *acquisition* >> *processing & inversion* >> *modeling* *costs* are proportional to the *size* of *data* and *image* space

- **Solution strategy:**
 - *leverage new paradigm of compressive sensing* (CS)
 - identify simultaneous acquisition as CS
 - reduce acquisition, simulation, and inversion costs by *randomization* and deliberate *subsampling*
 - recovery from sample *rates* ≈ *computational cost proportional* to *transform-domain sparsity* of *data* or *model*
Today’s agenda

- Brief introduction to *compressive sensing*
 - *sparsifying* transforms
 - *randomized* = *incoherent* downsampling
 - *nonlinear* recovery by *sparsity* promotion

- *Sparsity-promoting recovery* from *randomized simultaneous measurements*
 - missing *separated* shots versus missing *simultaneous* shots
 - recovery from simultaneous data *with* and *without* primary prediction (CSed EPSI)

- *Joint sparsity-promoting recovery* from *randomized image volumes*
 - leverage *focusing*
 - *reduction* of model-space wavefields
Problem statement

Consider the following (severely) underdetermined system of linear equations

\[\text{data (measurements/observations/simulations)} \rightarrow \begin{pmatrix} y \\ A \end{pmatrix} = \begin{pmatrix} \text{unknown} \\ x_0 \end{pmatrix} \]

Is it possible to recover \(x_0 \) accurately from \(y \)?
Perfect recovery

- **conditions**
 - A obeys the **uniform uncertainty principle**
 - *randomized* A \leftrightarrow mutual incoherence
 - x_0 is **sufficiently sparse**

- **nonlinear** recovery procedure:

\[
\min_x \|x\|_1 \quad \text{s.t.} \quad Ax = y \quad \text{perfect reconstruction}
\]

- **performance**
 - S-sparse vectors recovered from roughly on the order of S measurements (to within constant and log factors)

[Candès et al.’06]
[Donoho’06]
NAIVE sparsity-promoting recovery

\[A^H y = A r \]

\[y = A_{r'}^\dagger r' \]

\[x_0 = A_{r'} y \]

inverse Fourier transform

detection + data-consistent amplitude recovery

Fourier transform

data-consistent amplitude recovery
Extensions

- Use CS principles to select *physically* appropriate
 - *measurement* basis $M = \text{random phase encoder}$
 - *randomized restriction* matrix $R = \text{downsampler}$
 - sparsifying transform S (e.g. curvelets)
 - driven by signal type, physics, and type of acquisition (e.g. fMRI vs seismic)

- Sparse signal representation:

$$y = Ax_0$$

with

$$A = RMS^H$$

Selection is aimed at turning *aliases/coherent subsampling artifacts* into harmless *noise* ...
Recovery from *randomized* simultaneous measurements

Tim T.Y. Lin and Felix J. Herrmann, Designing simultaneous acquisitions with compressive sensing. Submitted Abstract, Amsterdam, 2009, EAG

Seismic Laboratory for Imaging & Modeling
Department of Earth & Ocean Sciences
The University of British Columbia

Delphi, June 4th, 2009
Relation to existing work

○ Simultaneous & continuous acquisition:
 – A new look at marine simultaneous sources by C. Beasley, ‘08
 – Simultaneous Sourcing without Compromise by R. Neelamani & C.E. Krohn, ’08.
 – Changing the mindset in seismic data acquisition by A. Berkout, ’08
 – Independent simultaneous sweeping - A method to increase the productivity of land seismic crews by D. Howe, M. Foster, T. Allen, B. Taylor, and I. Jack, ’08

○ Primary prediction through wavefield inversion:
 – Elimination of free-surface related multiples without need of the source wavelet by L. Amundsen, ‘01
 – Primary estimation by sparse inversion and its application to near offset reconstruction by G. van Groenenstijn and D. Verschuur, ’09
Two questions

• Question I: What is better? Having missing single-source or missing randomized simultaneous experiments?

• Comparison between different undersampling strategies for source experiments:
 – Deterministic missing shot positions
 – Randomized jittered shot positions
 – Randomized simultaneous shots

• Question II: What is better? First recover and then process or process directly in the compressed domain?

• Example: randomized primary prediction with EPSI
Interpolate

50% subsampled shot from regularly missing shot positions
Interpolate

SNR = 8.9 dB
50% subsampled shot from regularly missing shot positions
Interpolate

50% subsampled shot from randomized jittered shots
Interpolate

SNR = 10.9 dB
50% subsampled shot from randomized jittered shots
Simultaneous & continuous sources
Randomized simultaneous sweep signals

- Linearly ramping seismic sweep, 5 to 110 Hz
- Simultaneous source at all positions, each randomly phase encoded
50% subsampled shots from *randomized* simultaneous shots.
SNR = 16.1 dB
50% subsampled shot from *randomized simultaneous* shots
total data
Primary-prediction from randomized compressive data
Recovered **total** data from *randomized* compressive data.
Predicted primaries from recovered total data
Observations

- Incoherent *randomized* sampling crucial for creating favorable recovery conditions for *sparsity-promoting recovery* from "incomplete" data
 - depends on the choice of *downsampled randomization* RM
 - simultaneous acquisition is better for reconstruction

- Recovery greatly improves when estimating primaries
 - *deconvolved primaries* are *sparser* than *multiples*
 - *multiples* are mapped to *primaries*
 - example of *randomized wavefield inversion* with *reduced sizes*

- Push recovery down into processing flow, i.e., compressive processing & imaging

- Extend these ideas to imaging = model-space compressive sampling
Recovery from *randomized* image volumes

Seismic Laboratory for Imaging & Modeling
Department of Earth & Ocean Sciences
The University of British Columbia

Delphi, June 4th, 2009
Strategy

- Leverage CS towards solutions of wave simulation & imaging problems

- Subsample solution deliberately, followed by CS recovery

- Speedup if recovery costs < gain in reduced system size
 - computation
 - storage

- Examples:
 - compressed imaging by CS sampling in the model space
Relation to existing work

- **Simultaneous & continuous acquisition:**
 - Efficient Seismic Forward Modeling using Simultaneous Random Sources and Sparsity by N. Neelamani and C. Krohn and J. Krebs and M. Deffenbaugh and J. Romberg, ’08

- **Simultaneous simulations & migration:**
 - Phase encoding of shot records in prestack migration by Romero et. al., ’00.

- **Imaging:**
 - How to choose a subset of frequencies in frequency-domain finite-difference migration by Mulder & Plessix, ’04.

- **Full-waveform inversion:**
 - 3D prestack plane-wave, full-waveform inversion by Vigh and Starr, ’08

- **Wavefield extrapolation:**
 - Compressed wavefield extrapolation by T. Lin and F.J.H, ’07
 - Compressive wave computations by L. Demanet (SIA ’08 MS79 & Preprint)
Essentials of seismic inversion

Simulation:

\[H[m]U = Q \quad \text{and} \quad H^*[m]V = \Delta R \]

discretized PDE (Helmholtz)

sources

variables (Earth)

solution (seismic wavefield)

adjoint solution (seismic wavefield)

residue (data)

Imaging:

\[\hat{\delta I}(x_s, x_r, \omega) = (U \circ V^*) \]

\[\delta m(x_s = x_r, t = 0) = \sum_{\omega} \omega^2 \text{diag}\{\hat{\delta I}\} \]
Essentials of seismic inversion

Simulation:

\[\mathbf{H}[\mathbf{m}] \mathbf{U} = \mathbf{Q} \quad \text{and} \quad \mathbf{H}^*[\mathbf{m}] \mathbf{V} = \mathbf{\Delta R} \]

- High-dimensional solutions are extremely expensive to compute
- Inversion (e.g. via Gauss-Newton) requires multiple solves
- Number of blocks in \(\mathbf{H} \) and number of \(\text{rhs} \) determine simulation & acquisition costs

Imaging:

\[\mathbf{\delta I}(x_s, x_r, \omega) = (\mathbf{U} \circ \mathbf{V}^*) \]
\[\mathbf{\delta m}(x_s = x_r, t = 0) = \sum_\omega \omega^2 \text{diag}\{\mathbf{\delta I}\} \]
Essentials of seismic inversion

Simulation:

\[
H[m]U = Q \quad \text{and} \quad H^*[m]V = \Delta R
\]

- High-dimensional solutions are extremely expensive to compute
- Inversion (e.g. via Gauss-Newton) requires multiple solves
- Number of blocks in \(H \) and number of \(\text{rhs} \) determine simulation & acquisition costs

Imaging:

\[
\delta I(x_s, x_r, \omega) = (U \circ V^*) \\
\delta m(x_s = x_r, t = 0) = \sum_\omega \omega^2 \text{diag}\{\hat{\delta I}\}
\]

- Explicit matrix evaluations part of prestack migration are expensive, require lots of memory
- Improve recovery by formulating imaging as a CSed inversion problem where
 - off diagonals are penalized (impose focusing)
 - image recovered by wavefield inversion by joint sparsity promotion
Imaging by wavefield correlations

Creation of image volumes involves

$$\delta I(x_s, x_r, t) = F_t^* \sum_\omega \omega^2 (U \circ V^*)$$

with

$$(U \circ V^*) = \begin{bmatrix} \bar{U}_1 & \cdots & \bar{U}_{n_f} \\ \vdots & \ddots & \vdots \\ \bar{U}_{n_f} & \cdots & \bar{U}_{n_f} \end{bmatrix} \begin{bmatrix} V_1^T \\ \vdots \\ V_{n_f}^T \end{bmatrix}$$

and

$$U_f = [u_1 \cdots u_{n_f}] \text{ and } V_f = [v_1 \cdots v_{n_f}]$$

- Extremely large problem size
- Gradient updates do not account for the Hessian
- Recast imaging into a multi-D deconvolution problem supplemented by focussing
- Penalize off-diagonals as part of this focussing procedure
Wavefield focusing

Define linear mid-point/offset coordinate transformation

\[\delta I'(m, h, t) = T_{(x_s,x_r)}^{\Delta h}(m,h) \delta I(x_s, x_r, t), \]

with \(m = \frac{1}{2}(x_s + x_r) \) and \(h = \frac{1}{2}(x_s - x_r) \)

Penalize **defocusing** via minimizing [Symes, ‘09]

\[\|P_h I'(\cdot, h)\|_2 \text{ with } P_h \cdot = h \cdot \]

an **annihilator** that increasingly penalizes non-zero offsets.

Remark: conventional imaging principle

\[\delta m = \delta I'(\cdot, h = 0, t = 0) \]
Wavefield inversion with focusing

Form augmented linear system

\[(U^* \circ S^*X) \approx V^*\]
\[P_hX \approx 0\]

with the sparsifying transform (curvelets/wavelets along depth-midpoint slices)

\[S \cdot := \text{vec}^{-1} \left((\text{Id} \otimes C) T_0 \right) \text{vec}(\cdot)\cdot\]

and \(T_0\) source/receiver-midpoint offset mapping supplemented with the imaging condition for \(t=0\).

Formulation by wavefield inversion is a two-edged sword:
- Correct for amplitudes by wavefield inversion
- Reduce system size by compressive sampling ...
System-size reduction by CS

For each angular frequency, randomly subsample with CS matrix

$$\begin{bmatrix}
R_1^\sigma \otimes R_1^\rho \otimes R_1^\zeta \\
\vdots \\
R_{n_f'}^\sigma \otimes R_{n_f'}^\rho \otimes R_{n_f'}^\zeta
\end{bmatrix}$$

random phase encoder

$$\left(F_3^* \left(e^{i\theta} \right) \right) F_3$$

$$\theta_w = \text{Uniform}(0, 2\pi)$$

with

$$n_f' \times n_\sigma' \times n_\rho' \times n_\zeta' \ll n_f \times n_s \times n_r \times n_z$$

Model-space CS subsampling along source, receiver, and depth coordinates.
Compressive wavefield inversion with focusing

Compressively sample augmented system

\[\mathbf{R}_M \left(\mathbf{U}^* \circ \mathbf{S}_* \mathbf{X} \right) \approx \mathbf{R}_M \mathbf{V}^T \]

\[\mathbf{P}_h \mathbf{X} \approx 0 \]

or

\[\mathbf{A} \mathbf{X} \approx \mathbf{B} \]

Recover focused solution by mixed (1,2)-norm minimization

\[\tilde{\mathbf{X}} = \arg \min_{\mathbf{X}} \| \mathbf{X} \|_{1,2} \quad \text{subject to} \quad \| \mathbf{A} \mathbf{X} - \mathbf{B} \|_{2,2} \leq \sigma, \]

with

\[\| \mathbf{X} \|_{1,2} := \sum_{i \in \text{rows}(\mathbf{X})} \| \text{row}_i(\mathbf{X})^* \|_2 \]

and

\[\| \mathbf{X} \|_{2,2} := \left(\sum_{i \in \text{rows}(\mathbf{X})} \| \text{row}_i(\mathbf{X})^* \|_2^2 \right)^{\frac{1}{2}} \]
Stylized example

background velocity model

perturbation
Stylized example

migrated CS image

plain migration

wavefield inversion

inverted CS image
Stylized example

Recovery from 64-fold subsampling...
Stylized example

correlation based

wavefield inversion
Stylized example

Correlation-based wavefield inversion
Common-image gathers are focused.
Observations

- **CS** provides a **new linear sampling paradigm** based on **randomization**
 - reduces *data* volumes and hence *acquisition*, *processing* & *inversion* costs
 - linearity allows for compressive processing & inversion

- **CS** leads to
 - “acquisition” of *smaller* data volumes that carry the **same information** or
 - to **improved inferences** from data using the **same** resources
 - **concrete implementations**

- **CS** combined with physics improved recovery by using
 - compressively-sampled multiples
 - focusing in the image space

- **Bottom line:** acquisition & processing & inversion costs are **no longer** determined by the *size* of the **discretization** but by **transform-domain sparsity** of the solution ...
Acknowledgments

- Sergey Fomel and Yang Liu for Madagascar (rsf.sf.net)
- E. Candes and the Curvelab team

This work was carried out as part of the Collaborative Research & Development (CRD) grant DNOISE (334810-05) funded by the Natural Science and Engineering Research Council (NSERC) and matching contributions from BG, BP, Chevron, ExxonMobil and Shell. FJH would also like to thank the Technische University for their hospitality.

slim.eos.ubc.ca

and... Thank you!