Extended images with surface-related multiples

Rajiv Kumar, Ning Tu, Tristan van Leeuwen and Felix J. Herrmann
Why need image gathers?

- Effective velocity analysis tool
- Full-subsurface offset volumes allow us to conduct
 - AVA using information from all offset directions.
 - Geological dip corrections
Why need multiples?

illumination by primaries

illumination by multiples

subsurface reflector

surface
Least-squares imaging: 1 *primary-only* shot gather

Least-squares imaging: Imaging 1 *multiple-only* shot gather
Motivation

• *Leverage benefits of SRME*
 - highly accurate data-driven multiple prediction

• *All in one go method*
 - we combine SRME within the extended imaging condition
Extended imaging condition

\[e(\omega, x, x') = \sum_i u_i(\omega, x)v_i(\omega, x')^* \]

- Organize wavefields in monochromatic data matrices
- Express extended image volume tensor as matrix

\[E = UV^* \]
horizontal offset

horizontal + vertical offset

all offsets

[Biondo & Symes, '04; Sava & Vasconcelos, '11]
Extended images

sources

gridpoints

4D image volume as a matrix

\[n_x \times n_z \]
Computation

- *Complete* image volume too *large* to form: \((n_x \times n_z)^2\)

- instead, *probe* volume for information via the action of a vector \(E_w\)

- \(w\) can be interpreted as subsurface (sim.) *source* function
Computation

- *mat-vec* with extended image:

\[\tilde{E} = EW = H^{-1} P_s^T Q D^* P_r H^{-1} w \]

- \(\tilde{d} = P_r H^{-1} w \)
 (one subsurface source)

- \(\tilde{y} = Q D^* \tilde{d} \)
 (surface source function)

- \(\tilde{E} = H^{-1} P_s^T \tilde{y} \)
 (one surface source)
Computation

computation of an *image point gather*

<table>
<thead>
<tr>
<th></th>
<th># of PDE solves</th>
<th>“flops for correlations”</th>
</tr>
</thead>
<tbody>
<tr>
<td>conventional</td>
<td>$2N_s$</td>
<td>$N_s \times N_h$</td>
</tr>
<tr>
<td>ours</td>
<td>$2N_x$</td>
<td>$N_s \times N_r$</td>
</tr>
</tbody>
</table>

N_s - # of sources
N_r - # of receivers
N_h - # of subsurface offsets
N_x - # of sample points
Least-square extended imaging

\[
\text{minimize } \quad \frac{1}{2} \| D - \mathcal{F}(\tilde{E}) \|_F^2
\]

where

\[\mathcal{F}(\tilde{E}) = P_r H^{-1} \tilde{E}(Q^* P_s H^{-*} W)^*\]
How to incorporate the multiples
Linearized modeling with multiples

\[P \triangleq \nabla F_i [m_0, Q_i - P_i] \]

\(\nabla F_i \) : linearized modelling

\(m_0 \) : background model

\(Q_i - P_i \) : areal sources
Extended imaging with multiples

\[\tilde{E} = EW = H^{-1} P_s^T (Q - P) P^* P_r H^{-1} W \]

where

\((Q - P)\) : areal source

\(P\) : total upgoing wavefield
Experimental Results
Velocity model

True model

Initial model
Least-squares RTM images

Primary only
Primary + multiples
Primary + multiples

w/o areal sources
with areal sources
Primary only

Primary + multiples
w/o areal sources

Primary + multiples
with areal sources
Conclusions

Multiples provide extra illumination that can complement primaries in least-squares seismic imaging.

Multiples can be used with primaries to form subsurface image gathers via least-squares inversion.
Future work

To find by case studies where the extra illumination from multiples can help extended imaging.

To incorporate the proposed method into migration velocity analysis.
Acknowledgements

Thank you for your attention!

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, CGG, Chevron, ConocoPhillips, ION, Petrobras, PGS, Statoil, Total SA, Sub Salt Solutions, WesternGeco, and Woodside.
References

